SUBJECT:	
CHEMISTRY(B.Sc.)	After completion of the course students will be able to:
PROGRAMME	PO1: Understand Organic, Inorganic, and Physical Chemistry
OUTCOMES (COs)	concepts.
	PO2: Apply chemistry to everyday life and explore new scientific
	and technological fields.
	PO3: Explain the principles behind chemical techniques used in
	academics and industry.
	PO4: Practice safe handling of chemicals in research and
	laboratories.
	PO5: Use chemistry to address social, economic, and environmental
	issues.
	PO6: Perform qualitative and quantitative analysis using various
	methods.
	PO7: Identify sustainable chemical processes for environmental
	benefit.
	PO8: Communicate complex theories clearly in writing and speaking.
	PO9: Conduct experiments, analyze data, and interpret results
	ethically.
	PO10: Follow safety and chemical hygiene regulations and practices.
PROGRAMME	PSO1: Understand fundamental concepts in Organic, Inorganic, and
SPECIFIC	Physical Chemistry.
OUTCOMES (PSOs)	PSO2: Perform scientific experiments effectively using procedural
(Students will be able to	knowledge.
have)	PSO3: Apply scientific concepts in industry, medicine, and research,
	and understand their significance.
	PSO4: Work in research labs and related fields, and gain skills for
	employment in chemicals, pharmaceuticals, food, materials
	industries, and pass national competitive exams.
COURSE OUTCOMES	
SEMESTER-I	
CORE- Paper-I	CO1: Analyze the behavior of gases and apply different laws to real
Inorganic Chemistry-I	gases.
	CO2: Explain the liquid state of matter and interpret the pH scale.
	CO3: Describe the solid state of matter and examine its related
	properties.
	CO4. Define and apply concents with a haffine and 11'''
	CO4: Define and apply concepts such as buffers and solubility
CODE	
COREII	COI:Describe the behavior of gases and apply different laws to real

Physical Chemistry-I	gases.
	CO2:Explain the liquid state of matter and interpret the pH scale.
	CO3 Explain the solid state of matter and analyze its related
	properties.
	r r r
	CO4:Define and apply concepts such as buffers and solubility
	products.
GE-1	CO1: Students will learn how to use Fajan's rules, the Born equation,
Atomic structure,	and Slater's rules to perform specific calculations in chemistry.
Bonding, General	
Organic Chemistry &	CO2: Students will gain an understanding of how atoms and
Aliphatic Hydrocarbons	molecules are organized and structured.
	CO3: Students will be able to predict and describe the shapes and
	arrangements of different molecules.
	CO4: Students will learn how to create various organic compounds
	by attaching different functional groups and analyze them.
	CO5: Students will study how to prepare and understand the
	properties of various organic compounds
SEMESTER-II	properties of various organic compounds.
CORE-III	CO1: Describe the electronic forces in organic molecules and explain
Organic Chemistry I	different types of organic reactions. Analyze the stereochemistry of
	organic molecules, recognize the mechanisms of various reactions,
	and explain optical activity and geometrical isomerism.
	CO2: Discuss the preparation and interpret the physical and chemical
	properties of alkanes, alkenes, and alkynes.
	CO3: Distinguish between different types of organic reactions and
	analyze the reactivity of various intermediates.
	CO4: Apply principles of organic qualitative analysis to identify
	organic compounds in the CHO system and determine the melting
	point of pure samples.
	CO5: Perform chromatographic separation of organic molecules
	using TLC and paper chromatography techniques.
COREIV	CO1:Define thermodynamic terms and laws;calculate energy changes
Physical Chemistry II	and heat capacities, and predict conditions for thermodynamic
- · · ·	
	equilibrium and reaction spontaneity.

	CO2:Recognize thermodynamic conditions for one-comCOnent and
	two-component systems.
	CO3:Describe the quantitative treatment of the principle of chemical
	equilibrium
	equinonum.
	CO4:Explain colligative properties of different solutions.
	COS:Determine the heat capacity of a calorimeter; calculate integral
	enthalpies of various salts and measure the enthalpy of neutralization
	of an acid-base mixture.
GE-2	CO1:Calculations related to both ideal and real gases, and use
Chemical Energetics,	thermodynamic principles to predict chemical equilibrium and the
Equilibria & Functional	sCOntaneity of reactions.
Organic Chemistry	
- g	CO2:Apply their understanding of colloids and gels in practical contexts.
	CO3:Know in-depth knowledge of the properties and behaviors of
	solid and liquid states of matter.
	CO4: Synthesize various organic compounds, including alkyl halides,
	aryl halides, alcohols, and phenols.
	CO5:Describe the fundamental concepts of organic chemistry related
	to compounds such as carboxylic acids, ethers, and esters.
SEMESTER-III	
COREV	CO1:Classify different metallurgical operations and describe the
Inorganic Chemistry-II	HSAB principle
morganic Chemistry-II	novu principie.
	CO2:Compare the structure and bonding in boranes, carboranes
	metal alusters, polyamides, and psoudo halogons
	metal clusters, poryamides, and pseudo naiogens.
	CO3 Describe the inert pair effect different hydrides and the
	anomalous behavior of s- and n-block elements
	anomalous behavior of s- and p-block clements.
	CO4:Comparecompounds formed by noble gases and explain
	different types of inorganic Polymers like silicones and silicates
	anterent types of morganie i orginors like sheenes and sheates.
	CO5:Prepare various inorganic compounds, estimate the amount of
	chlorine in bleaching nowder, and standardize the amount of copper
	in a given solution
CODE VI	In a given solution.
COREVI	COT:Describe the preparation and properties of halogenated

Organic Chemistry-II	hydrocarbons.
	CO2:Explain various methods for preparing alcohols, aldehydes,
	etcomes, and carboxyfic acids, and predict the stereo chemical outcomes of organic reactions based on reaction mechanisms
	outcomes of organic reactions based on reaction meenanisms.
	CO3:Propose mechanisms for named and rearrangement reactions,
	and select appropriate organic reagents for functional group
	interconversions.
	CO4. Destance association has a situation
	co4:Perform acetylation, benzoylation, bromination, and mitration reactions using conventional methods
	reactions using conventional methods.
	CO5:Prepare derivatives using green methods and purify them
	through recrystallization.
COREVII	CO1:Explain phase equilibrium and interpret phase diagrams.
Physical Chemistry-III	
	CO2:Describe binary solutions and derive various laws related to
	them.
	CO3:Derive rate equations from mechanistic data.
	CO4:Comprehend the applications and actions of catalysts, and
	analyze surface phenomena.
	CO5:Analyze adsorption isotherms and determine distribution
	coefficients between solvent systems, and calculate reaction kinetics.
GE-III	CO1: Gain an understanding of the basic principles of metallurgy and
Chemistry Of S- And P-	the concepts of acids and bases.
Block Elements, States	
Of Matter & Chemical	CO2: Acquire in-depth knowledge about the properties and behaviors
Kinetics	of s-block and p-block elements.
	CO3: Design and conduct experiments to measure the rate of
	chemical reactions.
	CO4: Measure the viscosity and surface tension of liquids.
	CO5: Explore and comprehend the principles of solid-state
	chemistry.
Semester- IV	-
COREVIII	CO1:Describe the theory of coordination chemistry, including
Inorganic Chemistry-III	valence bond theory (inner and outer orbital complexes), the electro
	neutrality principle, and back bonding.
	CO2:Evaluate the stability of various oxidation states and

	interprete.m.f. using Latimer and Frost diagrams.
	CO3:Examine the chemistry of Ti, V, Cr, Mn, Fe, and Co in various
	oxidation states, excluding their metallurgy.
	CO4:Discuss the use of chelating agents in medicine.
	CO5:Examine the role of iron in biological systems, including the
	functions of haemoglobin and myoglobin
CORFIX	CO1:Explain different nitrogen-containing compounds and the
Organic Chemistry-III	significance
Organic Chemistry-III	significance.
	CO2:Elucidate the structure and chemistry of natural products
	including terrenes and alkaloids
	including terrenes and arkatolds.
	CO3 Describe the chemistry of heterocyclic compounds and write the
	mechanisms involved in the reactions of nitrogen-containing
	compounds
	compounds.
	CO4: Apply principles of organic qualitative analysis to identify
	organic molecules containing extra elements such as nitrogen
	sulphur and halogens
	supriur, and naiogens.
	CO5.Identify various nitrogen-containing compounds and prepare
	derivatives of these compounds for conformation
CORFX	CO1: Define theories of conductivity the laws of weak and strong
COREA Dhygiaal Chamistry IV	conductivity, the laws of weak and strong
r nysicar Chennistry-rv	electrolytes, and describe then fole in turmetric analysis.
	CO2:Explain different types of electrochemical cells
	CO2.Explain different types of electrochemical cons.
	CO3:Describe the theories behind COtentiometric and
	conductometric titrations and apply these methods in practical
	scenarios.
	CO4:Explain the electrical properties of microscopic particles.
	CO5:Handle electrochemical instruments such as conduct meters and
	Potentiometers to perform qualitative estimations and develop skills
	for using these instruments effectively.
GE-IV	CO1: Study the properties and uses of 3d transition metals and their
Organometallics	key compounds like potassium dichromate and potassium
Bioinorganic Chemistry	nermanganate
Poly Nuclear	Pormanganaco.
Hydrocarbons And UV	CO2: Learn about organometallic compounds their types and
II Snoetroscony	examples like ferrocene and methyl lithium and how carbon
in specificscopy	monoxide interacts with metals
	monoride interacts with mounts.

	CO3: Understand how metal ions like Na+, K+, Mg2+, and Ca2+ are
	important in biological processes such as blood clotting and energy
	production.
	CO4: Explore the properties and reactions of aromatic compounds
	such as naphthalene and pyridine, and learn about active methylene
	compounds and their uses.
	r · · · · · · · · · · · · · · · · · · ·
	CO5: Use UV-Visible and IR spectroscopy to identify and analyze
	organic molecules, focusing on their functional groups and molecular
	vibrations.
SEMESTER-V	
COREXI	CO1:Explain different spectroscopic methods for identifying organic
Organic Chemistry-IV	molecules.
g	
	CO2:Illustrate the principles of UV-Vis, IR, NMR spectroscopy, and
	Mass spectrometry.
	CO3:Interpret spectral data of simple molecules and solve related
	problems.
	CO4:Comprehend the preparation, properties, structure, and
	importance of carbohydrates, including mono-, di-, and
	Polysaccharides.
	CO5:Perform qualitative analysis of different carbohydrates and
	unknown organic compounds containing bi-functional groups,
	estimate the amounts of sugars in a sample, and identifylabeled peaks
	of unknown organic compounds using NMR and IR data.
COREXII	CO1: Describe quantum mechanics and identify its applications in
Physical Chemistry-V	Molecular Orbital and Valence Bond theories, including the
	construction of hybridization schemes.
	CO2: Describe the basic principles of molecular spectroscopy and
	demonstrate the skill to elucidate the structure and chemical
	composition of samples from various molecular spectra.
	CO3: Explain chemical bonding in different covalent molecules
	quantatively.
	CO4: Describe the principles of absorption spectra in the visible
	range and Raman spectra
	CO5: Verify the laws of absorption for qualitative estimation of

	inorganic samples,
	CO6: Estimate different metal cations using the colorimetric method.
DSE-1	CO1:Understand the fundamentals of Polymers, including
Polymer Chemistry	biopolymers and synthetic Polymer's.
	CO2:Explain the mechanism and kinetics of Polymerization.
	CO3:Identify methods for characterizing Polymers.
	CO4:Describe the preparation, properties, and uses of different Polymers.
	CO5:Synthesize different Polymer's in the laboratory and identify labeled peaks in the IR spectra of known Polymer's.
DSE-2	CO1:Comprehend the principles and limitations of green chemistry.
Green Chemistry	CO2:Design chemical syntheses using green chemistry approaches.
	CO3:Implement real-world reactions using green methods.
	CO4:Explore future trends in research by applying green chemistry principles.
	CO5:Synthesizecompounds using green methods and utilize safer chemicals for various syntheses.
SEMESTER-VI	
COREXIII Inorganic Chemistry-IV	CO1:Explain the classification and bonding in organometallic compounds.
	CO2:Describe various theories that explain the stability of organometallic compounds and apply these theories to practical scenarios.
	CO3:Identify the use of different organometallic compounds in synthesis and analyze inorganic salt mixtures qualitatively using the H ₂ S scheme.
	CO4:Deduce the thermodynamic and kinetic aspects of organometallic compounds.
	CO5:Separate and estimate salt mixtures qualitatively, and perform the separation of mixtures containing insoluble components or

	interfering anions.
COREXIV	CO1:Comprehend the classification and properties of amino acids
Organic Chemistry-V	and nucleic acids.
	CO2:Explain the classification, characteristics, and mechanisms of
	enzyme action.
	CO3:Describe various bio-metabolic processes.
	CO4:Analyze theories related to important pharmaceutical
	compounds and dyes, identify biologically significant molecules and
	their roles in human life, and define terminologies used in biological
	systems.
	CO5:Prepare different organic compounds, estimate amino acids and
	vitamin C, determine the iodine number of oils/fats, and develop
	skills in the quantitative analysis of biomolecules.
DSE-III	CO1:Identifypollution caused by different industrial chemicals.
Industrial Chemicals	
And Environment	CO2:Implement measures to control environmental pollution and
	describe methods for reducing pollution.
	CO3:Estimate different types of water Pollutants.
	$CO4:$ Measure dissolved CO_2 in gas samples and prepare
	environmentally safer chemicals.
	CO5:Assess the impact of environmental pollution by measuring
	various testing parameters
DSE-IV	CO1:Select appropriate sources for reviewing literature and conduct
Project	basic research effectively
	CO2:Compile and interpret research data, present findings in a
	publishable format, and utilize various chemistry software tools while
	understanding research ethics.